Number of spiral self-avoiding loops on a triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 193093
(http://iopscience.iop.org/0305-4470/19/15/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:09

Please note that terms and conditions apply.

Number of spiral self-avoiding loops on a triangular lattice

K Y Lin, S H Chiu, S K Ma and C H Kao
Physics Department, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

Received 13 January 1986

$$
\begin{aligned}
& \text { Abstract. Exact results are derived for the number } C_{n} \text { of spiral self-avoiding loops with } n \\
& \text { steps on a triangular lattice. A closed-form expression for the generating function } \\
& \qquad G(x)=\sum_{n=1}^{\infty} C_{n} x^{n} \\
& \text { is obtained. For } n \rightarrow \infty, C_{n} \text { increases as } n^{6} / 31104 \text {. }
\end{aligned}
$$

Spiral self-avoiding walks (ssaw) were first considered by Privman (1983). Exact results for the number of n-step SSAW on a square lattice were derived by Blöte and Hilhorst (1984), Guttmann and Wormald (1984) and Joyce (1984). Recently the number C_{n} of n-step spiral self-avoiding loops on a square lattice was calculated exactly by Manna (1985). His result is

$$
\begin{equation*}
C_{n}=(n-2)\left(n^{2}-4 n+24\right) / 48 \tag{1}
\end{equation*}
$$

where n is an even integer. For $n \rightarrow \infty, C_{n}$ increases as $n^{3} / 48$.
SSAW on a triangular lattice are those self-avoiding walks which, at each step, either go straight ahead, turn through 60° or turn through 120° (both to the left). The special case where 60° deviations are forbidden has been solved exactly by several authors (Lin 1985, Joyce and Brak 1985, Liu and Lin 1985, Lin and Liu 1986).

Our aim in the present paper is to study the asymptotic behaviour of spiral self-avoiding loops on a triangular lattice and to derive an exact expression for the generating function

$$
\begin{equation*}
G(x)=\sum_{n=1}^{\infty} C_{n} x^{n} \tag{2}
\end{equation*}
$$

Consider first the special case where 60° deviations are forbidden. The spiral constraint restricts the loops to be of two categories, triangular and non-triangular types, as shown in figure 1. The starting direction is fixed to the right. We define $n=3 k$ where k is an integer. A triangular loop with perimeter length n will occur k times, depending on the position of the starting point on the horizontal side. Each non-triangular loop corresponds one-to-one with an internal lattice point of a triangle with perimeter n. Therefore we have

$$
\begin{equation*}
C_{n}=k+(k-1)(k-2) / 2=\left(k^{2}-k+2\right) / 2 . \tag{3}
\end{equation*}
$$

The generating function is

$$
\begin{align*}
G(x) & =\sum_{k=1}^{\infty} \frac{1}{2}\left(k^{2}-k+2\right) x^{3 k} \\
& =x^{3}\left(1-x^{3}+x^{6}\right)\left(1-x^{3}\right)^{-3} . \tag{4}
\end{align*}
$$

For $n \rightarrow \infty, C_{n}$ increases as $n^{2} / 18$.

Figure 1. Two types of spiral self-avoiding loops where the 60° deviations are forbidden.
Consider next the special case where 120° deviations are forbidden. The constraint restricts the loops to be of four categories, as shown in figure 2 . The generating function corresponding to figure $2(k)$ is denoted by G_{k}. We have

$$
\begin{align*}
& G_{1}=\sum_{a, b, c=1}^{\infty} a x^{3 a+2 b+2 c} \sum_{\min (a+c, a+b)>d>0} x^{-d} \\
& G_{2}=\sum_{a, b, c=1}^{\infty}(a-1)(c-1) x^{3 a+2 b+2 c} \sum_{\min (a+c, a+b)>d>0} x^{-d} \tag{5}\\
& G_{3}=\sum_{a, b, c=1}^{\infty} x^{3 a+2 b+2 c}
\end{align*}
$$

We find

$$
\begin{align*}
G_{1}+G_{2} & =\sum C_{n}^{\prime} x^{n} \\
& =x^{6}\left(1-x^{2}\right)^{-4}\left(1-x^{3}\right)^{-2}\left(1+x^{3}+x^{4}+x^{5}+x^{8}\right) \\
& =x^{6}+4 x^{8}+3 x^{9}+11 x^{10}+13 x^{11}+29 x^{12}+36 x^{13}+68 x^{14}+85 x^{15}+\ldots \\
G_{3}= & \sum C_{n}^{\prime \prime} x^{n} \tag{6}\\
= & x^{7}\left(1-x^{2}\right)^{-2}\left(1-x^{3}\right)^{-1} \\
= & x^{7}+2 x^{9}+x^{10}+3 x^{11}+2 x^{12}+5 x^{13}+3 x^{14}+7 x^{15}+\ldots
\end{align*}
$$

Figure 2. Four types of spiral self-avoiding loops where the 120° deviations are forbidden.
where $C_{n}^{\prime} \rightarrow n^{5} / 3456$ and $C_{n}^{\prime \prime} \rightarrow n^{2} / 24$ when $n \rightarrow \infty$. The calculation of G_{4} is very complicated. After a lengthy derivation, we obtain

$$
\begin{align*}
G_{4} & =\sum C_{n}^{\prime \prime \prime} x^{n} \\
& =x^{11}\left(1-x^{2}\right)^{-4}\left(1-x^{3}\right)^{-3}\left(1+x+3 x^{2}+2 x^{3}+2 x^{4}+x^{6}\right) \\
& =x^{11}+x^{12}+7 x^{13}+9 x^{14}+27 x^{15}+\ldots \tag{7}
\end{align*}
$$

where $C_{n}^{\prime \prime \prime} \rightarrow(18)^{-1}(12)^{-3} n^{6}$ as $n \rightarrow \infty$. Clearly the asymptotic behaviour is dominated by loops of figure 2(4). The generating function corresponding to all loops is

$$
\begin{align*}
G & =\sum_{i=1}^{4} G_{i}=\sum C_{n} x^{n} \\
& =x^{6}\left(1-x^{2}\right)^{-4}\left(1-x^{3}\right)^{-3}\left(1+x-2 x^{3}-x^{4}+3 x^{5}+4 x^{6}+3 x^{7}+x^{11}\right) \\
& =x^{6}+x^{7}+4 x^{8}+5 x^{9}+12 x^{10}+17 x^{11}+32 x^{12}+48 x^{13}+80 x^{14}+119 x^{15}+\ldots \tag{8}
\end{align*}
$$

where $C_{n} \rightarrow n^{6} / 31104$ as $n \rightarrow \infty$.
Finally we consider the general case. There are 68 categories of loops, including those shown in figures 1 and 2. The generating functions corresponding to figures 1 and 2 are the same as before except that, in equation (5), G_{3} is replaced by

$$
\begin{equation*}
\sum_{a, b, c=1}^{\infty}(a+b) x^{3 a+2 b+2 c} . \tag{9}
\end{equation*}
$$

The overall asymptotic behaviour is still dominated by loops of figure 2(4). We find that the overall generating function is

$$
\begin{align*}
& G=x^{3}\left(1-x^{2}\right)^{-4}\left(1-x^{3}\right)^{-3}\left(1+2 x+x^{2}-x^{3}-x^{4}+6 x^{5}+10 x^{6}+4 x^{7}\right. \\
&\left.-6 x^{8}-9 x^{9}-2 x^{10}+3 x^{11}+3 x^{12}-x^{14}\right) \\
&= x^{3}+2 x^{4}+5 x^{5}+10 x^{6}+19 x^{7}+37 x^{8}+63 x^{9}+109 x^{10}+175 x^{11} \\
&+277 x^{12}+417 x^{13}+623 x^{14}+892 x^{15}+\ldots \\
&= \sum C_{n} x^{n} \tag{10}
\end{align*}
$$

where $C_{n} \rightarrow n^{6} / 31104$ as $n \rightarrow \infty$. It is surprising that the exponent of n is different from the value for the square lattice.

Acknowledgment

This research is supported by the National Science Council, Republic of China under contract NSC75-0208-M007-26.

References

Blöte H W J and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 Ll11

